

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

MATHEMATICS

4733

Probability & Statistics 2

Wednesday

25 JANUARY 2006

Morning

1 hour 30 minutes

Additional materials: 8 page answer booklet Graph paper List of Formulae (MF1)

TIME

1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the spaces provided on the answer booklet.
- Answer all the questions.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are permitted to use a graphical calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72.
- Questions carrying smaller numbers of marks are printed earlier in the paper, and questions carrying larger numbers of marks later in the paper.
- You are reminded of the need for clear presentation in your answers.

- 1 In a study of urban foxes it is found that on average there are 2 foxes in every 3 acres.
 - (i) Use a Poisson distribution to find the probability that, at a given moment,
 - (a) in a randomly chosen area of 3 acres there are at least 4 foxes, [2]
 - (b) in a randomly chosen area of 1 acre there are exactly 2 foxes. [3]
 - (ii) Explain briefly why a Poisson distribution might not be a suitable model. [2]
- The random variable W has the distribution B(40, $\frac{2}{7}$). Use an appropriate approximation to find P(W > 13).
- 3 The manufacturers of a brand of chocolates claim that, on average, 30% of their chocolates have hard centres. In a random sample of 8 chocolates from this manufacturer, 5 had hard centres. Test, at the 5% significance level, whether there is evidence that the population proportion of chocolates with hard centres is not 30%, stating your hypotheses clearly. Show the values of any relevant probabilities.
- 4 DVD players are tested after manufacture. The probability that a randomly chosen DVD player is defective is 0.02. The number of defective players in a random sample of size 80 is denoted by R.
 - (i) Use an appropriate approximation to find $P(R \ge 2)$. [4]

[7]

- (ii) Find the smallest value of r for which $P(R \ge r) < 0.01$. [3]
- In an investment model the increase, Y%, in the value of an investment in one year is modelled as a continuous random variable with the distribution $N(\mu, \frac{1}{4}\mu^2)$. The value of μ depends on the type of investment chosen.
 - (i) Find P(Y < 0), showing that it is independent of the value of μ . [4]
 - (ii) Given that $\mu = 6$, find the probability that Y < 9 in each of three randomly chosen years. [4]
 - (iii) Explain why the calculation in part (ii) might not be valid if applied to three consecutive years.
- 6 Alex obtained the actual waist measurements, w inches, of a random sample of 50 pairs of jeans, each of which was labelled as having a 32-inch waist. The results are summarised by

$$n = 50$$
, $\Sigma w = 1615.0$, $\Sigma w^2 = 52214.50$.

Test, at the 0.1% significance level, whether this sample provides evidence that the mean waist measurement of jeans labelled as having 32-inch waists is in fact greater than 32 inches. State your hypotheses clearly.

The random variable X has the distribution $N(\mu, 8^2)$. The mean of a random sample of 12 observations of X is denoted by \overline{X} . A test is carried out at the 1% significance level of the null hypothesis H_0 : $\mu = 80$ against the alternative hypothesis H_1 : $\mu < 80$. The test is summarised as follows: 'Reject H_0 if $\overline{X} < c$; otherwise do not reject H_0 '.

(i) Calculate the value of
$$c$$
. [4]

(ii) Assuming that $\mu = 80$, state whether the conclusion of the test is correct, results in a Type I error, or results in a Type II error if:

(a)
$$\bar{X} = 74.0$$
, [1]

(b)
$$\overline{X} = 75.0$$
.

- (iii) Independent repetitions of the above test, using the value of c found in part (i), suggest that in fact the probability of rejecting the null hypothesis is 0.06. Use this information to calculate the value of μ .
- 8 A continuous random variable X has probability density function given by

$$f(x) = \begin{cases} kx^n & 0 \le x \le 1, \\ 0 & \text{otherwise,} \end{cases}$$

where n and k are positive constants.

(i) Find
$$k$$
 in terms of n . [3]

(ii) Show that
$$E(X) = \frac{n+1}{n+2}$$
. [3]

It is given that n = 3.

(iii) Find the variance of
$$X$$
. [3]

- (iv) One hundred observations of X are taken, and the mean of the observations is denoted by \overline{X} . Write down the approximate distribution of \overline{X} , giving the values of any parameters. [3]
- (v) Write down the mean and the variance of the random variable Y with probability density function given by

$$g(y) = \begin{cases} 4\left(y + \frac{4}{5}\right)^3 & -\frac{4}{5} \leqslant y \leqslant \frac{1}{5}, \\ 0 & \text{otherwise.} \end{cases}$$
 [3]

		3.51		D (0) (11 - 61 2)
1	(i) (a) $Po(2)$: $1 - P(\le 3)$	M1	_	Po(2) tables, "1 –" used
	= 0.1429	A1	2	Answer, a.r.t. 0.143
	(b) Po(2/3): $e^{-2/3} \frac{(\frac{2}{3})^2}{2!}$	MI		Parameter 2/3
	4 ;	M1	2	Poisson formula correct, $r = 2$, any μ
	= 0.114	Al	3	Answer, a.r.t. 0.114
	(ii) Foxes may congregate so not	B1	_	Independent/not constant rate/singly used
	independent	B1	2_	Any valid relevant application in context
2	N(80/7, 400/49)	B1		80/7, a.e.f (11.43)
	$\frac{13.5 - \frac{80}{7}}{\frac{20}{7}}$	B1		400/49 or 20/7 seen, a.e.f. (8.163 or 2.857)
		M1		Standardise with $np \& npq$ or \sqrt{npq} or nq , no
	= 0.725	A1		\sqrt{n}
	$1 - \Phi(0.725)$	A1		\sqrt{npq} correct
	= 0.2343	M1	_	13.5 correct
		A1	7	Normal tables used, answer < 0.5
				Answer, a.r.t. 0.234
				[SR: Binomial, complete expression M1, 0.231
		1		A1
				Po(80/7) B1, complete expression M1, 0.260
				Al
				Normal approx to Poisson, B1B0 M1A0A1
				M1A0]
3	H_0 : $p = 0.3$	B1		NH stated, must be this form (or π)
	$H_1: p \neq 0.3$	B1		AH stated, must be this form (or π) [μ : B1
	B(8, 0.3)	M1		both]
	$P(\le 4) = 0.9420;$ $P(> 4) =$	A1		B(8, 0.3) stated or implied
	0.0580	M1		Any one of these four probabilities seen
	$P(\le 5) = 0.9887;$ $P(> 5) =$			Either compare $P(\geq 5)$ & 0.025 / $P(\leq 4)$ &
	0.0113	M1		0.975
	Compare 0.025 or critical value 6	1	_	Or critical region ≥ 6 with 5
	Do not reject H ₀	A1√	7	H ₀ not rejected, can be implied, needs
	Insufficient evidence that			essentially correct method
	manufacturer's claim is wrong			Correct conclusion in context
				[SR: Normal, Poisson: can get
				B2M1A0M0M1A1
				$P(\leq 5)$: first 4 marks. $P(=5)$: first 3 marks
		ļ		only.]
4	(i) B(80, 0.02)	M1		B(80, 0.02) seen or implied, e.g. N(1.6, 1.568)
	approx Po(1.6)	M1		Po(np) used
	$1 - P(\le 1) = 1 - 0.5249$	M1		$1 - P(\leq 1)$ used
	= 0.4751	A1	4	Answer, a.r.t. 0.475
		ļ		[SR: Exact: M1 M0 M0, 0.477 A1]
	(ii) $P(\le 4) = 0.9763, P(\ge 5) =$	M1		Evidence for correct method, e.g. answer 6
	0.0237	A1		At least one of these probabilities seen
	$P(\le 5) = 0.9940, P(\ge 6) =$	A1	3	Answer 6 only
	0.0060			[SR N(1.6,1.568): 2.326 = $(r-1.6)/\sqrt{1.568}$
	Therefore least value is 6			M1
		1		r = 5 or (with cc) 6 A1
	Ì	i		Exact: M1 A0 A1]

		0	3.41		Т	G 1 1 1 11 11 2/4
5	(i)	$\frac{0-\mu}{\mu/2} = -2,$	MI			Standardise, allow –, allow $\mu^2/4$
		•	Al			z = 2 or -2
		independent of μ	A1			z-value independent of μ and any relevant
	0.0000	$1 - \Phi(2) = 1 - 0.9772 =$	A1		4	statement
	0.0228		ļ			Answer, a.r.t. 0.023
	(ii)	$\Phi[(9-6)/3]$	M1			Standardise and use Φ [no \sqrt{n}]
		$\Phi(1.0) = 0.8413$	A1			0.8413 [not 0.1587]
		$[\Phi(1.0)]^3$	M1			Cube previous answer
		= 0.59546	A1		4	Answer, in range [0.595, 0.596]
	(iii)	Annual increases not	Bl		1	Independence mentioned, in context. Allow
		independent				"one year affects the next" but not "years not
		P			- {	random"
6	Ho: 11 =	32; H_1 : $\mu > 32$, where μ is	B1		Or	ne hypothesis correctly stated, not x or \overline{x} or \overline{w}
•		ion mean waist measurement	B1		1	oth completely correct, μ used
	$\overline{W} = 3$		B1		1	mple mean 32.3 seen
		$214.50/50 - \overline{W}^2$ [= 1]	MI			prect formula for s^2 used
1	4		M1		1	ultiply by 50/49 or √
	$\sigma^2 = 50$	$0/49 \times s^2$ [= 50/49 or 1.0204]			141	unipiy by 50/77 of 1
1	α: z	$=(32.3-32)\times\sqrt{49}$	MI		Co	orrect formula for z, can use s, aef, need $\mu = 32$
		= 2.1	Al		ı	= 2.1 or $1 - \Phi(z) = 0.0179$, not -2.1
		Compare 2.1 with 3.09	B1			eplicitly compare their 2.1 with 3.09(0) or their
		or 0.0179 with 0.001				0179 with 0.001
	B. CV	$= 32 + 3.09 \div \sqrt{49}$	MI			$+z \times \sigma/\sqrt{n}$ [allow ±, s, any z]
Ì	p. C	= 32.44	Bi			= 3.09 and (later) compare \bar{x}
		Compare CV with 32.3	Alv	I		V in range [32.4, 32.5], $\sqrt{\text{on } k}$
Í	Donot	reject H ₀	Ml			
	Do not		IVII	V		orrect conclusion, can be implied, needs
	Incuffic	eient evidence that waists are				essentially correct method including \sqrt{n} ,
	IIISUITIC		1	,	١,,,	any reasonable σ , but not from $\mu = 32.3$
		actually larger	Alv	1	In	terpreted in context
		90 -	10		<u> </u>	
7	(i)	$\frac{80-c}{8/\sqrt{12}} = 2.326$	M			uate standardised variable to Φ¹, allow –
		8/ 1/2	1		1	2, 8 correct
		- 71.63	A			326 or a.r.t 2.33 seen, signs must be correct
		c = 74.63	l b	4	Ar	iswer, a.r.t. 74.6, cwo, allow \leq or \geq
			В		l	
					1	
			A			
	(;;)	(a) Type Leman	<u>l</u>		400	'umo T omon's ototod
	(ii)	(a) Type I error	B	1		ype I error" stated, needs evidence
		(b) Correct	1√	1		correct" stated or clearly implied
			B			rong c: $74 < c < 75$, $B1\sqrt{B1}\sqrt{C}$
			1√		1	74, both "correct", B1. 75 < c < 80, both
						ype I", B1
		24.62			Al	so allow if only one is answered
	(iii)	$\frac{74.63 - \mu}{8/\sqrt{12}} = -1.555$	M1*	•d	$\frac{c}{}$	$\frac{-\mu}{\sqrt{12}} = (\pm)\Phi^{-1}$, allow no $\sqrt{12}$ but not 80, not
		8/ V12	ер		1	
	:		1		1	3264
		Solve for μ	Alγ			prrect including sign, $$ on their c
		$\mu = 78.22$	dep'	*		lve to find μ, dep, answer consistent with signs
			M1		Ar	nswer, a.r.t. 78.2
			Al			
	<u> </u>		4			

8	(i)	$\int_0^1 x^n dx = \left[\frac{x^{n+1}}{n+1} \right]_0^1 = \frac{1}{n+1}$	M1		Integrate x^n , limits 0 and 1
		k/(n+1) = 1 so $k = n+1$	M1		Equate to 1 and solve for k
			A1	3	1
	(::)	$\int_0^1 x^{n+1} dx = \left[\frac{x^{n+2}}{n+2} \right]_0^1 = \frac{1}{n+2}$	M1		Integrate x^{n+1} , limits 0 and 1, not just $x.x^n$
	(ii)		A1		Answer $\frac{1}{n+2}$
		$\mu = \frac{k}{n+2} = \frac{n+1}{n+2} \mathbf{AG}$	ŀ		
		n+2 $n+2$	A1	3	Correctly obtain given answer
	<i>~</i>	cl . [r ⁶] ¹	MI		Integrate x^5 , limits 0 and 1, allow with n
	(iii)	$\int_0^1 x^5 dx = \left[\frac{x^6}{6} \right]_0^1 \ [= \frac{1}{6}]$	M1		Subtract $\left(\frac{4}{5}\right)^2$
		$\sigma^2 = \frac{4}{6} - \left(\frac{4}{5}\right)^2 = \frac{2}{75}$	A1	3	Answer $\frac{2}{75}$ or a.r.t. 0.027
	(iv)	$N(\frac{4}{5}, \frac{2}{7500})$	B1		Normal stated
		13 /300/	B1		Mean $\frac{4}{5}$ or $\frac{n+1}{n+2}$
			В1√	3	$\frac{1}{5}$ $\frac{1}{n+2}$
					Variance their (iii)/100, a.e.f., allow √
	(v)	Same distribution, translated	M1		Can be negative translation; or integration, must
					include correct method for integral
		Mean 0	A1√		(Their mean) $-\frac{4}{5}$, c.w.d.
		Variance 2/75	В1√		Variance same as their (iii), or $\frac{2}{75}$ by integration
		.5	3		the state of the s